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1. INTRODUCTION

Routing problems typically arise in several areas of distion man-
agement and logistics, and their practical significancadehy known.
The common objective of such problems is addressed to s #tisf
total demand localized over a logistical network, by camnging a
set of minimum feasible routes (i.e. with minimum traveliimge)
starting from the depot and ending into it, and servicinglasstiof
required links or nodes in the network. In the node-routirabfems
the demand (or service) occurs in the nodes, while in theartng
problems is assumed to be along the arcs (or edges).

In the general routing problems (GRPs) both two features are
merged in a single problem. GRP can be exploited to model real
life problems, like optimal routing for garbage collectiover a road
network: this is a very practical impact problem, in whichrgma-
nies are interested to optimize total travel time in vels@dmployed
for the collections of garbage bins. Many practical logigirob-
lems may be studied by resorting to the arc and node-routiegi
programming models. This thesis has been outlined in tHewel
ings sections: in the first section some essential scieffitéi@ture
(9) has been presented; in the second section a mathentfatical
mulation of the Mixed Capacitated General Routing Probls@{(
GRP) has been described and critically analyzed. In the faction
a branch and cut algorithm has been proposed and some general
ized polyhedral results have been discussed and presdfiteally
the computational results and complexity of the proposgdrahm
have been illustrated.
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105 1.1 Literature Review

s The MCGRP (also know as CGRP-m in [7]) is a routing problem
w7 that aims to minimize the total transportation cost of a $ebotes

e Servicing all required link and nodes. Each route startsfdepot

we and ends into it by collecting a subset of required links aodes

o Without exceeding its capacity. We consider an homogenteeis

w  Of vehicles, with same capacity for each of them. In the difien

12 literature not many papers are related to the MCGRP: moraonve
us Most of the cases, authors take into account capacitatedxedm
uw  graph features separately. Otherwise the MCGRP includes ma
us  Well-known routing problems only as special cases. Here e p
us POSe a fast overview of the main results produced over tinid &f

w7 problem until now. Orloff in [3] proposed the first algorithfar

us GRP on symmetric graph: it provides an unified approach t@enod
us routing and arc-routing problems, useful for making trattaeffec-

1o tive big-sized problem of this kind. The classical TravgliBales-

2 man Problem (TSP) and the Chinese Postman Problem (CPP) are
=2 Shown to be special limiting cases of the General Routingleéno:

s this implies that GRP is also a NP-Hard problem. Another impo
s tantfirstresult for GRP refers to separation problems aatamtwith

s connectivity andR-odd cut inequalities: these are solvable in poly-
s Nomial time, by means of max-flow calculations and the Pagl&er
=7 Rao procedure (see [11], [1]). This result can be easilyneidd

s 10 the MGRP ([9]): in the course of the algorithm additiona i
e equalities of the above mentioned classes are generatbéaare

1w Checked as violated. When this is no longer possible, and.ihe
1 Solution is still not integral, we invoke branch and bourfdheé re-

12 Sulting integer solution is feasible for the MGRP, it is opdil. Oth-

s €rwise, the procedure terminates with a tight lower bound,no

= feasible MGRP solution. A heuristic procedure for the MCGRE3

s Subsequently proposed in [4], with a single vehicle and wayk

s hours constraints: this algorithm is based on route fingtelr sec-
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1. Introduction 10

ond and its dual approach cluster first-partition secon@nTletch-
ford in [16] showed how to transform the General Routing Rrab
(GRP) into a variant of the Graphical Travelling SalesmaabPr
lem (GTSP), and found also some important valid inequalito
the GRP polyhedron. In [1] author remarks other valid inditjga
for the GRP, and he also explains how in Mixed Chinese Postman
Problem (MCCP) we can define the set of feasible solution®hnes
specific conditions. Besides, it is shown that we can useowtttis-
tinction two or one integer variable(s) for representingedross-
ing. Between the most important contributions of last yearany
work was done by Corberan, Sanchis et al.: in [6] they deedri
new family of facet-inducing inequalities for the GRP, winhigeem
to be very useful for solving GRP and RPP instances. Further,
they shown new classes of facets obtained by compositioaocet f
inducing inequalities. In [7] it was proposed an improvediinic
procedure than [4], proved by some computational resuttgar-
ticular they solved successfully until 50 nodes and 98 Im#tances
of mixed-graph, also capacitated. However this approaes aot
take in account transforming mixed graph instance into anvae
lent ACVRP one, and use any exact procedure on this for splvin
original problem. Meanwhile [9] and [6] point attention albh@&GRP
polyhedron, finding important theoretical results. In jzatar, they
proposed a cutting-plane algorithm with new separatiocguaares
for three class of inequalities: extensive computatiorpkeements
over various sets of instances was included. Similarly inha&-
thors proposed for GRP a very efficient local-search, in tiheir
computational experiments produced high-quality sohgiwithin
limited computation time. Some authors had computed sornd go
bounds for this problem: i.e., in [8] a lower bound is compluiath

a cutting-plane procedure, also invoking a branch-andidquro-
cedure. Instead upper-bound is computed exploiting a $teuior
meta-heuristic procedure.
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1. Introduction 11

1.2 Contributions.

In this section, we summarize the main contributions of tinesis.

We propose a MIP formulation for the problem using threesind
variables: it has advantages of a good mathematical triéitabut
for "big” instances it could be very time-consuming and nséalbie
in practice. So this was only a start point for our work, thated
us to relax some complicating constraints (including ietegnd so
called connectivity inequalities).

We implemented a GRASP-based heuristic (Greedy Randomized
Adaptive Search Procedure) to obtain an upper-bound foMiGe
GRP. Our approach uses a cluster first-route second for igpéikst
routes, which are trivially feasible by construction. Atdisce def-
inition between cluster and required element helps us toutzea
post-optimization procedure, recombing routes and amgitiaving
some of them exceeding capacity. The variation of the nuraber
vehiclem® offers the flexibility of constructing feasible solutiortan
the variable neighborhood. Finally we propose a branch&ég-
rithm to optimality solve several random-generated instarof the
MCGRP: this was performed by extending to the MCGRP classi-
cal connection, co-circuit and balanced-set inequalidesin-deep
analysis of our algorithm’s performances is faced by stouglythe
improving gap obtained for each class of violated constsain
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2. MATHEMATICAL FORMULATIONS FOR THE MCGRP

2.1 Definitions.

Let be:

e G=(V,E,A) a mixed graph defined over a set of vertivksa
set of edge& and a set of arc4;

o C=V\ {Vdepot} the customer set, whexgepqt represents the
node depot;

e Cr C C the required-customer set of nodes, with non-negative
demandsj; > 0;

e Ar C A the required-customer set of arcs, with non-negative
demandsijj > O;

e Er C E the required-customer set of edges, with non-negative
demandsijj > O;

e R=CRrUERUAR the set of required nodes, arcs and edges. In
the following we will refer to each element & as "required
element”.

e K={1,...,m"} the set of vehicle indexes, with some capacity

Q.

Q

Definition 1: We definem = P“’”eERUARd”+Zi€CquW a lower-bound
for m* (m < nm).
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2. Mathematical Formulations For The MCGRP 14

Observation 1: Finding the minimum numbmaf of vehicles to ser-
vice all the required elements can be reached by optimadityirg)
the following 1-Bin packing problem:

minm* = %y % (2.1)
keM

YA+ 3 A=Qyvkem (22)
iECr (i,j) EERUAR

S % =1,Y(,]) € ERUAR (2.3)
keM

S Z=1,vi eCr (2.4)
keM

xS,z € {0,1} (2.5)

1-Bin Packing is a well-know NP-Hard class problem, which ca
be solved exactly only for small instances, or alternagiexploit-
ing (meta)heuristics. Note thd#l | represents the maximum vehicle
number, and considering that this value can’t be greater ¢hadi-
nality of all required elements, we can assiyf = |Cr| + |[Er| +
AR]-
Definition 2: Given a mixed-grap8 = (V,E,A) and an integer per-
mutationo : Iy, — N such thato(i) = j withi € Iy andj € N, and
wherely is the set of indices mapping all the verticed/ina route is
defined as:

P ={(Vo):Va(2):---» Va(h-1): Vo)) :
Vo(1) = Vo(h) = Vdepot/\

(Vo (i) Vo(j)) € EUAV, | € IyA
Vo(i+1) = Vo(i) V1 € W\ {1,h+1}}

In fig 2.1 we show an example, where for sake of simplicity we
usedo(i) =1,Viely



224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

2. Mathematical Formulations For The MCGRP 15

O—E—0

Fig. 2.1: Route exampl@ = {(1,2)(2,3)(3,4)(4,5)(5,6)(6,7)(7,1) };

2.1.1 Problem and objective.

The MCGRP generalizes many vehicle routing problems tha¢ ha
been studied in the last forty years, for which hundreds gkepa
have been written, either to give exact or heuristic procesidor
their resolution and bounds.

These are specific characterizations of our problem, andamwe ¢
cite as examples:

e if A= 0= Er we have the Capacitated Vehicle Routing Prob-
lem(CVRP);

e if A= 0= Cr we have the Capacitated Arc Routing Prob-
lem(CARP);

e if E = 0 = ER we have the Asymmetric Capacitated Vehicle
Routing Problem(ACVRP);,

e if k=1 we have the General Routing Problem(CVRP);

The Mixed Capacitated General Routing Problem can be for-
mally defined as follows.
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2. Mathematical Formulations For The MCGRP 16

Definition 3: LetG = (V,E,A) be a strongly connected mixed graph
where:

e vertex 1€V represents the depot, and exists at least a customer
Ci,

e eachlink(i, j) € E € Ahas an associated non-zero ags{note
thatcij =0 andv(i,j) ¢ E € AGj = »);

e it exists a customer subgét such that each vertaxc Cr has
got a positive demand@ g < Q;

e it exists a customer subsEg such that each edge= (i, j) €
Er has got a positive demand0qe < Q;

e it exists a customer subs&g such that each vertex= (i, j) €
Ar has got a positive demand0qg, < Q;

e the sum of all demandgjcc,di + Y (i, j)eeruE: ij dO€s not ex-
ceedQ, whereQ is fixed and constant.

The objective is to finan toursQ—capacitated i such that:
e each tour passes through node 1;

e all demandsy;,ge,ga are fully satisfied (i.e. no residual de-
mands remains over a required component);

e each customerc CR a < A ande € E are served by exactly
one of themtour;

e the sum of all demandgicc,di + Y (i, j)eeruEs bij dO€s not ex-
ceedQ;

e the sum of all costs is optimal (i.e. minimum of sum the costs
over the links into activated routes).
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2. Mathematical Formulations For The MCGRP

2.1.2 Cutsets.

We define cutsetgS C V:

o AH(S) ={(i,j)) EAVIES jeV\S}=AS:V\9

e A (5 ={(j,i)eAVjeV\SieS=AV\S:S
e ET(S={(i,j) €E,VieS jeV\S=E(S:V\Y
e E7(§={(j,i)eE,VjeV\SieS =EV\S:Y
e AL(S={(i,j) EARVI€S jEV\S=AR(S:V\S
e Ax(S) ={(],i)eAR,VjeV\SieS=ArV\S:9
e ER(9={(i,j) EER,VIieS jeV\S =Er(S:V\Y
( 1) )

(
€EER VjeV\SieS=ErV\S:S

2.2 \Variables.

We will use three-index variables, where superscript viillegys re-
fer tok-route and subscript t@, j) link (or i for a node).

17
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23 2.2.1 Double-Edge variables.

2 1HIS representation requires a very large number of vagiablwe
»s got a very large majority of edges (i.E=| > |A|) this could lead to
26 Very big models, whose could be computationally inefficient
- Service-link variablext

We define the binary variabl&k =1,... m:

K 1 if k-vehicle serves linKi, j) € EUA;
11 0 elsewhere.

- Service-link variabley
We define the binary variabl&k =1,... m:
Vs { 1 if k-vehicle crosses linki, j) e EUA;
J 0 elsewhere.
- Service-node variable®
We define the binary variabl&k =1,... m:

z-k- _ [ 1 if k-vehicle serves node= Cr;
I 1 0 elsewhere.

20 The number of total variables is here|E| + |A| + |V, because
21 We distinguish between straight (i.e. fram€mode toj) and reverse
22 Crossings (i.e. frony node toi) over every edges. In what following
s We Will describe main conditions for our problem.

204 2.2.2 Parity and balanced-se conditions

s Definition 4: Given a mixed grape = (V,E,A), we say a node
2 V€V is even iff has got a even number of incident links (degree),
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2. Mathematical Formulations For The MCGRP 19

otherwise node is odd. Similarly we define a node bd#¥even
(resp. R-odd) iff has got a even (resp. odd) number of incident re-
quired links. If degree is equal to 0, then the node is congratly
even.

Definition 5: Given a mixed grapls = (V,E,A), a node seG C
V, an integer indeX € K and an integer variablé : L(S) — NU
{0}, with L(S) = E(S)UAT(S)UA™ (S), we saySis set-balanced iff
satisfy the following:

E(AT(S)+E(A(9)+E(E(9) <us
us= |AT(S)|+ |A(S)|+E(S),VScV

That is, if we consider contribution of every activated &lavg-
variable (first member of inequality ) with respect to evepsfi-
ble link of the same set (second member), we have that firsisum
greater or equal tas, thenSis set-balanced (and vice-versa).

Here we report two simple examples for clarifying these tan-c
ditions.

@

O——G

@

Fig. 2.2: Mixed-graph for parity and balanced-set examples
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parity
R-odd, even
R-even, odd
R-odd, even
4 | R-even, odd

WNRPI<

Tab. 2.1: Parity for Fig. 2.2.2 nodes

Fig. 2.3: Balanced-set example, whetg, = 1 andy , = 1.

In represented graph in fig. 2.2.2 we've got situation regmesd
in Table 2.1.

In mixed-graph represented in fig. 2.2.2 the balanced-s&t co
dition depends on activated variables: in fig. 2.3 is baldnce
meanwhile in fig. 2.4 is unbalanced.

2.3 Constraints.

Here we will briefly describe the constraints for our problewie

s Need to minimize a cost function computed over all used syutéh

315

316

317

318

319

the following requirements:

1. every service component must be served only oassign-
men);

2. total quantity carried by every vehicle cant excess fixauhc-
ity of that vehicle knapsacky;
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©
@‘ylis:l*@

k _
&2_1
¥

®

Fig. 2.4: Unbalanced-set example, whedg, = 1 andy} ; = 1.

= 3. We must assure parity for every node of every rop#iy:) ;

=1 4. we mustassure balancing for every node of every rinatiaced-
322 Set),

2= D. We must assure every route is connectaxhfection);

324 We can express these constraints in mathematical form as fol
25 |OWS.

326 2.3.1 Assignment

© (kLK

> (Xj+Xj)=1,V(i,j) eERCE (2.6)
m

ZXikal,V(i,j)eARgE (2.7)
=1

m

Y 2=1,Y(i,j) eCRCV (2.8)
K=1

%27 Here we imposed three kind of constraints for each requidge e
= (resp. arc and node), that is sum of these ovemalbutes must be
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equal to 1, so every required elements must be served ontyea ti
the number of trips is supposed constant and equal to looend
givenin 1.

2.3.2 Knapsack

S+ S i+ % 42 <Q vkeK
(i,])€Er (i,)) EAR iECr
(2.9)

These constraints impose for each route that fixed capQoitly
every vehicle cant be exceeded for every route we consider.

2.3.3 Parity & balanced-set

We represent parity and balanced-set condition as a simglgogf
constraints, where in first member we count the total numbac-o
tivated arcs and in second member edges contribution. Bsates
that in

I NP R R

Vil (i,j)eAg (i) Vil (i,))eAt Vit (j)eAR () Vi (jieA- (i)
R D IR D . D IR L
IRBE=N0 Vi: (jEE~(i) Vit (i,))eER (i) vi: (i, 1JEE* ()
Vi e V,Vk € K

2.3.4 Connection

These constraints are used to assuring our tours are cednéuat
IS every tour starts from depot and returns into it after isarg at
least an element of the network. This can be expressed myvrit
conveniently subtour elimination constraints for a coneégraph
G=(C\{1},E):
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Xij > 2,VSCV
Vi:(i,)EE(S)
«  WhereE(S)={(i,j) eE:ieSjeV\S}.
347 We now must extend this inequality to eveeyoute and taking
«s INtO account both service and traversing variables:

AR SN T S T

Vii(i.))€ER () vi:(IheEr (9 Vii(i,1)EAR(S) Vi:()eAR(S)
Y+ Y ¥ >2.n,¥SCC,Vf e w(S), vkeK
Vi:(i,))eE(S) Vi:(i,))EA(S)
where
X+ XK, if (i, ]) € Er
n= Xikj7 If(IaJ)EAR
Z, ifieCrNS
349 We introduced this term for limiting subtour eliminationrco
= Straint to only activated service variable, or to assureyeveute

= Serves at least a required element. This is a critical clasem
= Straints because number of necessary inequality is equal to

IC| C|
<3, (%)
2\«
52 2.3.5 Logical

= Our constraints overview is completed writing further inabty that
= fix priority betweerz andxf, y& variables, that is:

< Y o+ Y KK+ S o+

jev:(i.NeEL (i) EEME0) jeV:(i.TeE (i)
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yivk e K, Vi € Cr
jeVv:(i,)eAt (i)
This means that if we pass with routdor servicing a noddn
(zlk = 1), then we need having al least a exiting variable from that
node.

2.4 Objective Function.

With the above parameters and variables, a capacitatedajeoet-
ing problem on mixed graph has the objective of minimize tialt
cost (i.e. traveling distance) of the vehicles for each usetk.

We can express this in mathematical form as:

mnz'=3% Y ol XX+ S S Gixi+

kKeK (i,])eEr KeK (i,))eAr
z Clj yk +yk )+ z Z Cljyk
keK (i,])eE K(i,])eA

2.5 LP Models for the MCGRP.

Here we present the mathematical formulation of our prol§ifeom-
plete” model), obtained combining all the constraints weseen.

2.5.1 Double-Edge variables.

minf:Z Z cij(xikj+x‘j‘i)+z Z Cijxikj+

keK (i,])€Er keK (i,])eAr
SOy G+ Y Y i (210
keK (i,])eE keK (i,])eA

E(Xﬁ+X§)=1,V(i,j)eER§E (2.11)
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m

= 1,Y(i,]) EARC A (2.12)

k=1

E;kzl,w € CRr (2.13)

Z dij X,J-i-XJ,) Z dinikj—|— diZ<Q, vkeK

(i,J))€ER (i,)) EAR iECr
(2.14)
< Z xikj + Z xIJ
jeVvi(i,j)eExg (i) jeVvi(i,j)eAk (i)
> ooVt Y W,
jev:(i,))eE* (i) JeV:(i,J)eAt (i)
Vi € Cr, Vk € K (2.15)
RIS RN B B IR
Vil (i,)eAR() Vit (i,1)eAt(i) (j,heAz (i) Vit (ji)eA (i)
> oo+ Y yjku > ooXi- Y W
Vil (j,)eEg (i) Vil (J,)€eE(i) Vit (i,])eEg (i) Vil (i,)eE*(i)
Vi eV,Vk e K
(2.16)

R S R A S B
Vj:(i,))€ER (S) Vi:(I.heEr (9 Vii(i,)EAR(S)

>Nt 3 it 3 =2,
Vii(j,i)EAR (S Vj:(i,)EE(S) Vi:(i,))EA(S)
VSCC,Vf e w(S),VkeK (2.17)

< € {0,1},V(i, ) € ERUAR, Yk € K (2.18)
yke{o 1},V(i,j) € EUA Vk e K (2.19)
Z € {0,1}, Vi € Cr, Vk € K (2.20)
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This complete formulation express the problem of miningzin
the costs 2.10 over all the activated binary variables (oate vari-
ables), under the constraints of assignment (2.11 - 2.1#&pdack
(2.14), priority (2.15), parity and balanced-set (2.16) aonnection
or subtour-elimination 2.17.

In other terms, we need to optimize objective function 2du@r
the constraints that every required edge 2.11 and arc 2 4&ved
once, and analogous condition is valid for required nod&3.2.14
is used for saying, for each vehicle we use the knapsack reamist
whereas 2.15 serves for binding between themselves linkhadd
variables (so called priority constraints).

This last constraint can be more clear thinking i.e. if wespaish
first vehicleh time fromi node, then we need to go out frorat least
h time during route building. 2.15 are parity and balancecdcsat
straints, that assures we want to avoid a route pass throngde
without exiting from it: in particular parity assures, rdug speak-
ing, that for each node the number of incoming/outcomingdlirs
always odd (i.e. 24,6,... times); whereas balanced set assures for
each node there is, at least, the same number of entering<aimd e
links. 2.17 are connection inequalities written for a mixgdph,
where we defined quantity as said in 2.3.4.

This formulation has gdv |+ 2- |E| 4 |A| variables and a number
of constraints equal to:

C
[ER| +AR| + [Crl + K[ - (1+[CrI+ V| + H k= 2...|c|(|k|))

2.6 Short preliminary computational experiments.

In this section we will show some preliminary experimentshage
done for validating and testing our model with double-edga-v
ables. We implemented our model using CPLEX solver and Java
1.6, and ran our test with Intel Dub5750 CPU with 3 GB of RAM.
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393 2.6.1 Instances.

= Here we show the first computational experiments with randoxed

»s graph instances varying from 3 to 13 nodes. We assigned capac
ws Ity Q = 100 and varied demands which are distributed uniformly in
2w |0, %], meanwhile costs for every link are uniformly distributed i
2 |[CmIN,Cwvax] (Cmin = 1,Cuax = 100). Nevertheless solving com-
w0 plete formulation CPLEX ends with out-of-memory error, nmak

w0 IMpossible obtaining an exact solution with complete foatian

w1 With n > 10 nodes instances.

102 We specify that for skip out problem aimed in section 2.1 with
«: lower-bound, we avoided taking demands value too "nearQio

w0 It wWas seen experimentally that reducing this range aimokees

ws bigger instances of the same kind.

106 For sake of simplicity, we now assungepot= 1, while other

«» nodes are from 2 tiN|: we used a randomized procedure for gener-
ws ating a mixed grapls for running tests, as we describe in follows.
409 Our procedure could be articulate in two steps:

a0 e generate randomized adjacency matnix [Cij]; j—1 . v

a1 e usem for creating a new mixed-grap@ with uniformly dis-
a2 tributed demands;

as In first step we need to give a value for the sizef the matrix; this
. number will be used as starting input variable for our praced
as Next for eachi, j s.t. 1<1i < j <n, we assigned a random value
ac t0 every costj following a normal distribution betweeji, 100,

a7 considering a real range. Edges and arcs will be equallyilalis¢d

as N graph (i.e. 50% ) and, we considered opportunity of hawahg
ne least:

o e anedg€dl k), otherwise

4

N

= e two arcs(1,k), (h,1)
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a2 For the required components, we generate each time a random
»s Subset of service arcs, edges and nodes; the fixed capaciynis

2 puted af) = % +2-Dmax, whereDyax is the maximum feasible

»s demand value, fixed a priori (i.©uax = 18).

26 Finally we produce an input file structured as follows: in row
2 1,2,3,4 we report depot index node, capacity, number of nade

= number of edges. Innexrt+-4rows ¢ =1,...,|E|) we represent an
2 edge as follows:
430 i j cij dij di dj

431
a3 with obvious meaning of every number, i.e. :

a3 2327.012 7 0

434

435 represents edge,3) with ¢jj = 27,dij =12,d, =7,d3 =0.
s Similarly we represent first the number of arcs and then, it ne

w I+ |E|+4rows §=1,---,|A]) we report an arc in the same way as
s edge.

439 So the input file structure can be summarize as:

410 1

Q

442 | Vl

443 | El

aas i j cij dij di dj

446 | Al

aa7 i j cij dij di dj

448

449 As we said, we consider randomly generated instances framm 3 t
s 13 nodes, and some other instance we've used for a firstly gomp
. tational test. We represent every mixed graph graphicsiigwing

4!

a
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routes over them only for instances. For the sake of brewiyill
omit draw other routes for avoiding confusion and not resignifi-
cant representations: nevertheless we report the gedemtesp,
for each instance that was possible to solve for this pdatiicet of
randomly generated ones.

Results are summarized in Table 2.2, representing in exafy c
umn the following values:

e id (instance identifier), here is equal 6

e Q, the capacity of every vehicle;
¢ K, the lower-bound computed as we said in 1;
e D, the sum of all demands;

e ||, the number of nodes;

e |E|, the number of edges;

e |A|, the number of arcs;

e |Cr

, the number of required-nodes;

° ’ER

, the number of required-edges;

° ’AR

, the number of required-arcs;

2.6.2 Solutions.

In table 2.3 we reported solution we've obtained, reprasgrfor
every instance needed solving time (in iis) z* value when avail-
able, and when not we report OOF for Out Of Memory error .

Every mixed-graph is showed froe8 to €11 in following figs.
...2.21-2.6.2, in which we show for each lifik j) couplecij,d;.
Services in route are highlighted in bold on links, and aemtgld
over required nodes.
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Tab. 2.2:instances Features.

id [ Q [K[ D [V[[IEI[AI[ICR ] ER AR
e3 | 100,00 1| 40 | 3 2 1 1 2 1
e4 (100,00 1| 31| 4 4 2 0 4 2
e5 [ 100,00| 2 | 112| 5 7 3 3 7 3
e6 | 100,00 2 | 155| 6 | 10| 5 4 10 5
e7 | 100,00 2 | 129| 7 | 13| 8 1 13 8
e8 | 100,00| 3 | 253| 8 | 13| 11 6 17 11
e9 | 100,00| 3 |221| 9 | 22|14 | 3 22 14
el0| 100,00| 4 | 336| 10 | 27 | 18 0 27 18
ell| 100,00| 4 | 335| 11 | 32| 23 5 32 23
el2| 100,00| 5 |482| 12 | 38 | 28 7 38 28
el3| 100,00| 6 | 588| 13| 45| 33| 10 45 33

30

a7 For each route, we represented in bold the required arcsayesd e

~s and in italic required node.
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Tab. 2.3:instances Solutions

id T[ms] Z*
e3 141,00 131
e4 46,00 422
e5 156,00 461
e6 641,00 860
e’ 657,00 1284
e8 6031,00 1618
e9 | 10031,00 1731
el0| 9326296,00 2481
ell| 329078,00 2796

el2 OOM -
el3 OOM -
79 instances3

w0 INstancee3
p=(13),(32),(21),c, =131

4

[
-

482

482 instance4

w4 INStancee4
s p=(1,4),(4,2),(2,1)(1,4),(4,3),(3,2) (2,4), (4,3)(3,1),cp =422

486

4

3]
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instancess

Instancee5
p1=(14), (45), (53), (3,1),cp, = 150

Instancee5
p2 = (1,5), (52), (2,4), (4,3), (3,2), (2,1)xp, = 311

instancesb

Instancec6

a5 01 = (113)’ (315)’ (5’2)’ (214)’ (4’3)’ (312)’ (2’4)’(4’5)’ (512)1(216)’
» (6,3) (3,2),(2,1),

497

32
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e INStancec6

w0 P2=(1,6) (6,4) (4,1), (1,5), (5,6), (6,1)

instances’

» lnstancee”7

o P1=(1,3), (3,6), (6,9), (5,3), (3,4), (4,5), (5,7), (7,6),18,(1,5),
« (5,2),(2,6), (6,4), (4,1)

33
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s INnstancee?7

p2=(1.7),(7,2),(2,4), (4.7),(7.3), (3,2),(2,1)

instancees8

(2.21)

10 Instancee8

p1=(1,6),(6,3), (3.7), (7.2), (2,4), (4.5). (5,3). (3,2), (2,1)
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(2.22)
(2.23)

p2 = (1,6), (6,8), (8,34(3,7)(7,1), (1,8), (8.4), (4,7)(7.5),(5,8)
/
= X

(1
(3)
(6)

s INstancee8

p3 = (1,5) (5,2) (2,8)(8,7)(7.6), (6,5), (5,2),(2,6).(6,4)(4.,3),

s Instancee8

514
516

(2.24)
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s Instancee9
» p1= (14), (4,3) (3,1) (1,5)(5,2) (2,4) (4,5), (5,7), (7,8),(8,4)

521

522

(4,7),(7,3), (3,2), (2,1)
p2 = (1,9) (9,7) (7,6), (6,4),(4,9) (9,2), (2,8), (8,5), (5.3),(3,8),

23 (8,1)

524

525

p2 = (1,7), (7.2), (2,6), (6,5)(5,9). (9.6), (6.8), (8,9). (9,3),(3,6)
(6,1)

=6 |Nstanceel0
2 p1=(1,5), (5,6) (6,3)(3,9) (9,2) (2,4), (41) (1,7), (1,7) (7,5)

528

529

531

532

« (6,1)

535

(5,6), (6,4), (4,5), (5,8), (8,4),(4,1)

p2 = (1,8),(8,3), (3,2),(2,6), (6,10) (10,7) (7,9), (9,10) (10,8)

O (8,7) (7,2), (2,1)

p3 = (1,10) (10,3) (3,5),(5,2), (2,10) (10,4) (4,3), (3,7), (7,6),

pa = (1,9), (9,6) (6,8),(8,9) (9,5), (5,10} (10,7} (7,4), (4,9)
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(2,8),(8,3) (3,1)

1 2
3 4 5
6 / 7

10 11

s INstanceell

37
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a8 UPPER-BOUNDS FOR THE MCGRP.



539 3. OBTAINING A UPPER-BOUND FOR THE MCGRP.

540 3.1 Heuristic Algorithm

= 1 his algorithm is based over a GRASP (Greedy Randomized-Adap
.. tive Search Procedure) approach: in every iteration, idbuwip a

s first feasible solution and then improve it by a local searaice-

s dure.

It uses ’tluster-first, route-secoridapproach: in the first phase
we try to build a fixed numbemf) of clusterC,,, where each one
has a certain number of required elements. Matching to eaeloD
them a total demand:

D= z d+ z dij, vh=1,...,|C|
(i €CrNCh ((I N ) cERUARNC

545 we must assure that evedy, has the minimum gap with respect
=« 10 Q. We considered two possible strategies for satisfying rims
7 quirement:

s Str. 1 Select randomly a seed (required element) for thediuster

549 Ci1, and insert "nearest” elementsc R to the one already be-

550 longing toCq, until there are no more residual links or node
551 with compatible demand: repeat same procedure for others
552 cluster, until you've finished.

s Str. 2 Letm be the number of routes, and define a fictitious capacity
Q(j) =L-Qvj=1,...,X|: now fill clusterj (i.e. there’s

555 at least another compatible element) considering new dgpac
556 Q(j). In second phase, consider every residual element and
557 insert it into a available cluster, considering capalty
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Both of them require a "distance” measurement:
0:CjxteCj—R,VCj € X, vt €C;j

s that we will specify later in this thesis.
559 For choosing the best strategy for our purposes, we vatidate
s them solving the following model.

m m
min 3 [AK—§ A9
k=1

s=1,5+#k
(3.1)
S.t.
Y X =1,(,]) € Ar
keK
(3.2)
SO HX =1,(,]) €Er
keK
(3.3)
Z Z|!<: 1,Vi e Cr
keK
(3.4)
3odf i Yo )+ Y da‘<QvkeK
I€AR I€Er ieCr
(3.5)
X, 2 {0,1}, AK€ Ry, Vk, Vi € Cr,V(i, j) € ERUAR
(3.6)

561 This formulation aims to minimize the margin between every
= Cluster lambda and everyone else: in our model that quastifiyen

s DYy all k-required elements and capaciyratio. We then compare
= the cluster obtained solving this model with the ones olethloy our

s heuristic procedure, and results seems to confirm his glevedrd-

s Ity. Obviously we must consider that we ignored the fact thl
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cost for each cluster could be very high and so very far froenoib-
timum, interesting only to avoiding cluster with demands ouch
great with respect to others.

For easier solving of model (avoiding absolute value), vieoin
duced constraints:

m
Ak— S A= ak— Bk vk e K
s=1
ak,BX >0, vk e K
and replace objective function 3.1 with:
min 'y a*+ X
keK

Solving this model for the test-instances seen in previbapter,
it was seen experimentally that the second strategy worksriiban
the first: in fact while the first approach is more fast and poes
variable number of cluster (at leas}, the second aims to produce a
fixed number of clustem with uniformly distributed demands over
all clusters.

For the instanced} we have a total demar2l= 253 so allocated:
e D(1) =96 D(2) = 98,D(3) = 59 for strategy 1;
e D(1) =87,D(2) = 66,D(3) = 100 for strategy 2;

while solving exact model produces:
e A\ =0.841,=0.96A3=0.73

If we measure:

Si) = 100- lQQ/\)I\,_ D(i)|

fori = 1,2,3 and compute average demand for each strategy, we
obtain:

(S) = (14+2+14)/3=10%
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for first strategy and

(S) = (3.57+31+37)/3=23.84%

for the second.

3.2 Metrics: distance definition

A distance over a sef is a function

5:XxX—R
which satisfy following properties:
1.0(x,y) >0
2. 0(x,y) =0 <= x=y

3. 5(x,y) = 8(y.X)
4. 5(x,y) <0(%,2)+o(z,y), ¥X,y,ze X

Let G’ be an oriented graph obtained from original mixed @ne
replacing all edges with two opposite arcs and same cost:uile b
off-line a real matrix|R| x |R] (|
we compute "mean distancedi,,i,h € X = R as follows. Now let
0(R1,Rp) be the shortest path cost between required element couple
(R1,Rp). We distinguish six cases:

B) = M&’ A BcCg
o 5(AB,C) = %cla ABc Ag B Cr

O(A,

(

(AB,CD) = %cftha AB CD € AR

(AB,C) = Yectdontdrctdon AB¢ Eg, C € Cr
(

5
e 0
5(AB,CD) = %ctleotton ABc Az CD € Eg
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o o 5(AB,CD) _ dsc-iz-dDA + dCB-iz-dAD + dBD‘gdCA + dDB—ZFdAC’ AB,CD c
601 ER

Finally we define distance between required elenhenR and a
clusterC; as:

1 ICi
d(h,Cj) = i Zldih, vhe RVCj € X
=

w2 Case 1

603

s Case 2

605

s Case 3

607
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Case 4

3.3 Routing

Routing is based over the computing aji@edyfunctiong(t):
gt): (teCj) =R, VCjeX

where his value is equal to the minimum insertion costiofthe
current route, called "incremental cost”. We've chosenxjol@it the
simplest (fastest) way for building a route, that is:

e removing minimum cost path between two consecutive nodes
(i.e. using notation introduced in 24p = Vi), VHP = Vi(i4-1)
where P £ HP,IP,HP € V stands for respectively insertion
point and hook-up point)

e addingript andrg Hp (MiNimum paths betweemt andt, k).
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623 Since we use pre-computed minimum cost paths of the mixed-
2« Qraph, we're sure that the building route will have a (logalhi-

s mum cost. When we build a new route, initially we start with de
= generate routgy = {depot, and after first insertion of (either

= hode or link) we will obtain:p, = { path(depott), patht,depob}.

2 |IN general after th&—th insertion k > 1) k—route will be: px =

2 {...path(IP,t), path(t,HP)...} (in fig. above we showed @link

0 INSErtion).

S &3

631 3.4 Algorlthm

= INn what follows we reported the algorithmic outlines of tlehistic.

Algorithm 1 GRASP

Require: Mixed graphG, required elements sBt= CrUERUAR, objective func-
tion f, greedy functiorg, parameteor € [0,1], route sek = {...rg...}
Ensure: A feasible solutiorx for MCGRP
(%) =0
for it = 1 tomaxiterdo
Xx=0 _
constructG,R, g, a)
local(G, R, f,X)
if f(x) < f(x)then
X=X;
(%) = f(x);
end if
end for




3. Obtaining a upper-bound for the MCGRP.

Algorithm 2 construct

Require: G,R=CrUERUAR, g, a € [0,1]
Ensure: A feasible solutiorx for MCGRP
X « generateClusters;
k=0
while X # 0 do
Cj — first(X)
ry = {depot
while Cj # 0 do
t — first(Cj)
forall t €Cj do
computeg(t))
end for
Omin = Min{g(t) : t € Cj}
Omax= Mmaxg(t) :teC;}
RCL={s€C;:g(s) € 9,9+ a(Gmax—Gmin)]}, @ € [0,1]
let §be a random element froRCL set
rg < updatéry,S)
Ci =G\ {8
end while
X — X\ {Cj}
end while

Algorithm 3 local

Require: G, R, f, x
Ensure: A feasible solutiorx for MCGRP
while —localOptf) do
X = neightbootx) such thatf (x) < (X)
X=X
f(x)f(X)

end while

46

633 This was implemented in Javabland used for upper-bound com-

2 puting on all the instances.
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= A BRANCH-AND-CUT ALGORITHM FOR THE
s MCGRP.
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49

Our branch-and-cut algorithm is based over the checking-of v
olated cut constraints, and subsequent add to model s&&h iim
what following we introduce three kind of inequalities farrgrob-
lem, explaining their meaning and including a cutting-elaaigo-
rithm for finding and checking them.



644 5. VALID INEQUALITIES.

65 5.1 Connectivity Inequalities.

«s Here we consider the complicating constraints that expressec-
7 tion with depot (2.17):

Yoo+ Y x5+ S X+ Y oY+

(i,))€ER(S) (i,) EAL(S) (i, eAR(S) (i,))€E(S)

+ Z yikj+ Z ylfiZZ(th—}—X\lju)Ol‘Z th or 2 Zlé )
(i,i)eAT(S) (1)eA=(9) (uv)€Er (u,v)\gAR ;/S:

VSCV\{1}, (S # 0;V(u,v) € ER(S)UAR(S); Vs € Sg;Vk € K.

618 These inequalities would be written in exponential numbeing
« | the power-set cardinality of alb nodes: clearly this is not done
s IN practice. So we write them checking iteratively only thelated
s one, adding them to our model and solving the resulting bl
== then we will stop procedure when there’s no other violation.

© ®

Gij,dij  Gj = Cji{dij = dj;

oG
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5.1.1 Connectivity Inequalities Separation Algorithm.

LetG = (V,A) be the digraph builded from mixed-graghreplac-
ing every edge with a symmetric couple of two-way &iic$), (j,i),

with ¢ij = cji anddi; = dji. Let 4R = {C},...,C}} be strongly R-
connected components set @f, and conS|dek/§, VC as the
corresponding vertices set. These components coincidestrwith
all the strongly connected subgraphsofnduced fromVg, ERUAR.

Then we write into MCGRP starting formulation the (5.1), &r
S=V& such that/{ doesn't contains depot vertex. Being

= )zk&kjk) c pr(lER|+|E|)+(|AR|+|A|)+|VR|

forallk=1,...,|K| we proceed as follows:
e build graphGK = (V¥ E¥, AK) in GX where are defined:
—\7k—{reV]2rk>OorxJ >0oryk >0o0r X >0o0ry >
0,V1<i# <V}

— EX={(h,k) € E[x, > 0oryf, > 0orx > 0oryf >0,
VI<i#|<

— AK={(h,k) € AlX&, >0 0ryk, >0,V1<i#j<

e determineG* p connected components (i.e. applying Prim-
Dijkstra to every node), and let’ = {Cf,...,CX} be the

corresponding vertices set, a\v@ k the|r vertlces Be-
tween this last set of nodes, remove components with index
1< p<psuchthat k& Vcﬁ-

e build an asymmetric supportgraﬁ?‘i V JEX ) in which con-
sider a fictitious node € V¥ for each connected component
with only customers fronG. All of these nodes € V¥ are
linked tot € VK if exists in G at least a link between vertex
couple (V&, V). If no link exists, we insert a fictitious edge,

having zero cost, ifEX. E¥ is described by:
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— edgeqs,t) of cost :
B+ + Y O+
(i,)) EER(VESVE) (i, eE(VEVE)

(1) EARNVEVE)  (1)eARNVENVE)

Vit > %

(i) eANvZEvd (Jh)eANvgv)
- — Er(VE:VE) = {(i,]) € SHIE V&, j € V&) set of re-
673 guired edges incident inM& vertices;
- — E(VE: V) :/{(i, j) € E:ieVX |jeVX}:setof edges
o7 incident intoV < vertices;
- — AR(VE V) = {(i,]) € Ar | e V&, j € V&} : set of re-
677 guired arcs going out fromfc': vertices;
— AR(VE V) = {(j,1) € AR j € Vi eV} : set of re-
679 guired arcs going inwc‘: vertices;
— ANV V) = (Ii, j) € AtieVE e VX : set of arcs
o1 going out fromvi < vertices;
— ANV V) = {(J.i) e At j e V& i e V&) : set of arcs
s going intoVX vertices;
= e build the maximum spanning tre®ST¥) over GK (i.e. using
685 Prim-Dijkstra) such that in every step of generation welfirst
66 put a new nodé € V¥ and then check the violation of inequali-
687 ties (5.1) in sevé‘;. If there’s a violation, we insert correspond-

68 ing inequalities in the current problem.
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e after building MST, we remove a single edge every time and
check inequalities violations into every generated s@btre

In Figure (5.1) we represented a MCGRP instance, ®ith 10,
and demands/costs are representeg@y> 0,d;; > 0). The opti-
mal solution of mathematical model with assignment, knelbsa
priority, parity, balanced-set and connection only for bssi of
R—connected components is:

¢ X =Ly =¥ = L= (1-7-2-1);01= 2L,
© X59=1Y5s=Ya3= 15 =2=1r2=(3-9-8-3);cp =
10;
o V=V =1Z=1r3=(1-5-1);c3=4
® Xiy=Xjg=1Y4s=Y51 =Yg = Lira=(1-4-5-1-6—
1);cq = 27,;
where the objective value 5= 62.

The connection constraint introduced into starting foratioh
for S= {3,9} andk = 2 is satisfied for the current optimum so-
lution, which does not represent a feasible one for the prabl
because the following inequality is violated:

Y31+ Y32+ Y34+ Va5 + a2+ Yoo+ Yis+ a3+ Yea+ Yag+Yao > 2X5;

with S= {3,8,9}. GraphG? is then formed by a unique repre-
sentative node for the connected compori@htdefined bWé =
{3,8,9}; so we introduce into current model inequali®?.

5.1.2 Algorithmic outline (Connectivity cuts)

In ?? and?? we reported in pseudo-code the separation algorithm
for the connectivity cuts: this will be used in the final paftlresis
for computing some significant results. We assumed dhad q
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i4)

20 ;
(5.0 (7.0)
®.0) 3.4
R @
50 @o g3
(5,0 (3,0
1 L
(4.5 (2,0
(11.0)
] a0 L

m

Fig. 5.1:G = (V,E,A).

are the input demand vectors (respectively for links andeshdlhe
complete separation procedure is also described.

Algorithm 4 connectivitySeparationAld{, S')

Require: A feasible solutior§ for MCGRP, an integer valuié

Ensure: All violated connectivity inequalities with
the current relaxation problem)(

fork=1toK do
G'(k) < buildMGraphG, S, k)
if G'(k) # 0then
crs(k) < connectedComponents(G’(k))

if crs'(k) # 0 then

G(k) < buildSupportGrapt8,crs'(k), k)

respect to opal solution of

1
2
3
4
5: crs (k) < componentsWithoutDepot(crs)
6
7
8
9

v <« vUcheckAndAddConstraintS, G(k
end if
10: end if
11: end for

12: return S;

);K)
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Algorithm 5 Connection-Cuts
Require: Mixed-graphG = (V,E,A)
Ensure: Sub-optimal solutior&: -

1: K « computeLowerBound{, g, Q)
2. S’ « solveRelaxedProblen,K )
3: repeat

4: v+ doSepAlgK, S)

5. S« updateSolutiony)

6: until [v| >0

5.2 Co-Circuit Inequalities.

Definition 6: Given a mixed-grap® = (V,E,A) and a node subset
ScV, a link-cutset is defined as the sgiS) = E(S)UAT(S)U
A~ (S), that is set of all edges and arcsSmodes.

Itis defined for all required links the sg$(S) = Er(S) UAL (S)U
AR (S). The co-circuit inequalities assure that every link-ctibegng
crossed an even number of times, regardless of vehicle lsied,
Let beSCV, F C yr(S) andF C y(S), such thatF |+ |F| is odd.
The following co-circuit inequalities express the coratitthat if an
odd subseE UF' has a vertex int@, then at least an element from
y(S) must be served or crossed:

SO+ Y W= Y K+ S W-IFI-IF [+
(i,)ewR(S)\F (i,)ey(S)\F’ (i,))eF (i,j)eF’
whereSCV, F C y(S), F C y(9),

N ¢!
In what following we specific every term of this inequality;

F|+|F'| is odd andk =

1

® 2(i.i)erS\F Xlkj = 2 (i,)€Er(S)\F (Xikj +X'j‘i)+2(i,j)eA;(s)\F x,!‘j +
2 (j)eAs(S)\F X
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* S ner e N = e W Y S pearse i+

S (e 9\F' i

® 3(i)er X5 = Yi.)eEr(snr (X +X5) + 2 (i,])EAs (SNF X+
2 (j.)eAs (9NF XS

o Siiier Y = i eesrr WS HY5) + S hear e Y
Z(j,i)eA*(S)ﬁF’ylj(i'

5.2.1 Co-circuit Inequalities Separation Algorithm.
Cut-Trees.

In the following we will refer to the concepts described ie fhaper
proposed by [1]. LeG = (V,E) be a weighted undirected graph in

which a vector of weighta ¢ Q'f' is defined, and leX C V be a set
of terminal vertices. A cut-tree is an edge-weighted tresnsmg
X, and representing the minimum cut @& between every pair of
vertices inX.

More formally, the cut-tree consists of:

1. amappingt:V — T such thatr(x) = x, ¥x € X

2. an adjacency relationship, defined onX, such thatx ~y
means thakx andy are connected by an edge of the tree.

Then if we removex from a cut-tree, then the s&twill be par-
tioned into two disjoint set¥y andXy, so that a cufU,U) in G (also
called "cut inducted” by edge ~ y) is defined.

Perhaps following condition must hold:

e for every pairx,y € X with x ~y, the cut inducted by the edge
X ~yis a minimum(x,y)—cut in G with respect to the weights
W,
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Definition 7: Given a graplG with weights vectoiw, let H be a
connected subgraph &f, and consider a set of verticelsC V, then

the graph which results fro® by identification of the vertex set of

H as a vertex ob is said supernode. In other words we say that the
new graph is obtained by "shrinking>.

Given a cut-tre&” defined with respect t®, it satisfy following
properties:

1. ¥ supernodes define\apartition V =g & S,

2. Evert vertex ofT is exactly contained into a single unique su-
pernode and is said terminal (or representative);

3. let(R'S) be a cut-tre&’ branch, and let € T ese T represen-
tatives: (R, S) weight is maximum(r,s)-flow in G: Ag(r,s) =
f(RYS);

4. removing(R,S) from %" determine partition of node set in two
distinct subsets, which defines a minimum capacity cusin
betweerr ands, representative respectively fBrandsS;

Given a supernodRin %, let (R, S),...,(R S) be branches of
tree incident into it:

V' :=V\UU{u},u¢U;E :=E\(E(U :U)UE(U :V\U))U

{fe=(@,u)[i¢U,(i,j)€E,jeU};

A =A\(AU :U)UAU :V\U)UAV\U :U)U
{a=(i,u)[i¢U,(i,j) €A jeUU
{a=(u,i)|i¢U,(j,i)eAjeU};

whereE(U : U) (A(U : U)) represents edges (arcs) set with ex-
tremes intoU, while E(U : V\U) (AU : V\U))represents edges

=+ (arcs) set with first vertex intd and other into/\U, and similarly
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for VAU : U. This operation make possible tHatbe substituted
with a single vertexu in which are concentrated (shrunk) every ver-
tices inU, and then let be removed all parallel links incident into
So merged link weight is expressed by:

Yu= > Wi (5.1)
VijeU:(i,j)eE

Vu= > Wi (5.2)
VieU:(i,j)eA

wi= > Vi (5.3)
VieU:(],i)eA

Let (i, j) € EUA be aG link, then graphG\ (i, j) is the one we
obtain contractingi, j) through the identification of their vertices
(U ={i,j}): If His a connected subgraph & resulting related
graph by shrinkingH is equivalent tdJ =V (H) (by identification
of H vertices).

Well-known Gomory-Hu exact algorithm for cut-tree deteman
tion is outlined in what following:
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Algorithm 6 Cut-tree

Require: Mixed-graphG = (V,E,A) and sefl C V of terminal vertex.
Ensure: Cut-tree? .
1. LetbeZ :=V.
2: while T £0do
3: Selectrandomly ac T and let beR € . supernode ir¢” where there is.
Letr beRrepresentative.

4: Let Ggr be shrinking graph obtained by identification of all supele®
S,...,SiIn %, incident intoR, with verticess, i =1,...,1.

5:  LetbeAgg(r,t) = Ag(r,t) max flow from source to sinkt computed over
Gr, and let bed(X) minimum (r,t)-cut in Gg. Clearly if Gg is discon-
nected, it is not possible sending flow fromat, otherwise maximum flow
is zero and(X) = (V¢ , V), whereV,, \, is respectively the connected
components vertices set qft.

6: Letbe? =(Z\{R})U({RNX}U(RNX)). SupernoddR is replaced by
supernodefRN X andRN X, connected by a link which weight i§(RN
X, RQY) = Agg(l,t) = Ag(r,t).

7. Vi=1,...1, replace every branciR,S) with a new one(RN X,S)
weightedf (RN X,S) = f(R S) if 5 € X, or abranchRN X, §) weighted
f(RNX,5)=f(RS)if s eX.

8: if RNX or RNX contains only terminal then

o: T=T\{t}.

10. endif
11: end while

Let G = (V,E,A) be the mixed graph:

o Let(X,¥,2) be such that € {0, 1}(2IErI+ARDxIK) e gr(GIEFANXIKD
and let bez € {0,1}/CRI*IK| relaxed solution. Build related di-
graphGy by only variables¢{ > 0,5 > 0,y% > 0 ey§ > 0.

FromGy we can define a new related gra@fy as following:

1. every ardi, j) € Gy is splitted into two arcs introducing a
new vertexsj between andj;

2. new arc(i,sj) € G is then saichormal half and it has
even label and capacity "= X + &
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795 3. complemented arj, j) € G is saidcomplemented half

- it has odd label and capacitngj_: 1—xE — K.

797 Everka+ vertex has got even or odd label, if respectively in-
708 cide a even or odd number of labeled odd arcs: in what follow-
790 ing we show typical situation that can occur while buildiGg

800 andG;_

Q/@Q/@

oz k 2%

(a) Required edge s (b) Arc in Gy

Fig. 5.2: First case ir5 building

J,‘?ij > 0 and gf, >0

(a) Required and deafb) Pair of opposite arcs in
headed edge i Gy

Fig. 5.3: Second case i building

01 e Let T, be terminal vertex set defined as odd labeled s@i‘jn
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J,’:‘J > 0 or z;ﬁj >0
(@)Arcin G (b) Arc in Gy
Fig. 5.4: Third case inGk building

802 ¢ Invoca l'algoritmo p] su G;F con Ty insieme dei vertici termi-

803 nali e costruisci il cut-tre&,:.
O— O @ —©
k k k k
Li; T Yij e 1 Uij — Yij

= K k
1= @5 — Yjs

k'

Fig. 5.5: FromG to G;/.

804 Minimum odd cuts

s Letbe, without loss of generalit¢g = (V, E, y) a symmetric weighted

ws  graph, with weighty € Q'f' on every edge. Lef CV be a node set
= With even number of odd vertices: a afU) is definedT-odd (or
« 00dd) is [TNU| is an odd number. The minimum odd cut problem
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consists in determination of a odd &(lJ ) having minimum weight
y(0(U)). Padberg & Rao (1982) give a routine for finding this: it
firstly call Gomory-Hu procedure for the cut-tree buildingth ter-
minal T), and check every branch of the tree for each of|the- 1
cuts which their induce. This algorithm has got complexgya& to
O(IT|V||EJlog(V 2/ [E])).

Padberg-Rao separation algorithm

In what following we report Padberg-Rao algorithm for fingimax-
imum violation of cocircuit inequalities: as a matter oftfddossom
inequalities (originally found by this procedure) is retble to a
minimum odd cut problem
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Algorithm 7 Parity cut separation
Require: G=(V,E,A), S=(x,y,2)
Ensure: Minimum odd setsS, in which we check co-circuit inequalities viola-
tions.
1. Letbee =1.
2: for k=1tomdo
3:  LetbeS§ =0.
Gk = RelaxationGrapbG, x,y).
G, = AuxiliaryGraph(Gy, X, y).
DetermineTy terminal vertices set (odd nodes@j): T = GetOdd G, ).
Invoke [6] on G, and build cut-treéfez: %G: =CutTredG,", Ty).
for each|Tx| —1 branch in%G; do

Let bed(Uy) related cut-set frory. Note thatJy is a super-node set of

the tree.

10: cut-checking if [TyNUy| is odd andw<(d(Uy)) = f(Ux : ZA\Uk) < €
set inS; original nodes ofs such that are contained intfy supernodes:
S = GetVerticesG,Uy) for which (??) are violated. Note thaf (Uy :
Z\Uy) represents flow on the branch correspondin@dy) cut. If
there is more than a violation, select minimum cardinaliy 4" =
argmin{|Uy| : W¥(8(Uy)) < £}, and if there exist more minimum sets
S = {9, = GetVerticesG,U}) }iem, whereM = {h € .4 : U = Ui},

11:  end for

12:  for eachS € S, let beF! = {(i,]) € yr(§) : X > 00rxk > 0} e Rl =

{(i,]) € v(§) : ¥ > 0 oy > 0} cutset for which write the?).
13: end for

© o N g

820 Algorithmic Scheme

21 FOr a better performance we select to use the following bBcrias
2 a matter of fact, our problem is a MIP with integer values dmsl t
s Solution corresponds in every case.

24 5.3 Balanced-Set Inequalities.

Let be the weights:
wh =€+ 9K, ¥(i,j) €A
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Algorithm 8 Separation Heuristic for the Co-circuit inequalities

fori=1tomdo
let begy < related digraph fok(k) > 0 ory(k) > 0
for all ne N(gy) do
if isOdd(n) then
y(S) < linkCutSetn)
WR(S) — V(SN (ERUAR)
F—{(i,}) € w(St.c. 3% > 0}
F'—{(i,]) € (St.c. 3y% > 0}
if |F|+ |F’| is oddthen
add to the problem violated inequality fork
end if
end if
end for
end for

wh =X+ + R+ Y6, 9, ) € E
o and definef (S) = WK(AT(S)) —wWK(A(9)) + WX(E(S)). Replac-
ing values we obtain:

£(S) = X(AR(9) +Y*(AT(S)) — X (AR (9) — Y(A™(S))+

X“(Er(S)) +Y“(E(S) > 0
Imposingf(S) not negative means avoiding unbalancing situations,
l.e. ¢> 0 ingoing arcs an@& -+ b < c links (a arcs andb edges):
so this means that we're imposing that the number of outgaing
from S, not balanced from ingoing arcs, must be less or equal to
incident edges number. As said i

f(S) = wW(Bu(SU{0}) —P= 3w —u) +WH(E(S))

= Obviously if f(S) < 0 then a violation over curre@set is checked.

- Definition 8: A node sefC V having minimumf (S) value is said
s MOSt unbalanced set.
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2o Norbert & Picard showed in 1996 that this problem is equivale
20 10 determination the maximum of a quadratic function in bmna
= variables opportunely formulated, which for what showethRi &
= Ratliff (1975) e Picard & Queyranne (1980) is equivalenvsa a
s maximum flow problem on a related graph wjth + 2 nodes.

Let be
P= Z/WOi
1=

and consider symmetric graph= (Vy, En ) whereVy =V U{0,n+
1} andEy = EUE; UEy, where

E; ={e=(0,i)Vi eV t.c. We = max{w, —w:",0}}

Ex={e=(i,n+1)Vi €V t.c. We = maxw;" —w:,0}}

635 Rewriting equation that expresséss) we obtain:vvk(E(S)) +
0 Yiev\sWoi + TiesWint1 — TieyWoi = WKE(S) + Ties(Wi —wi)
= Where we replacedp; = maxw;, —w",0} andw; n 1 = maxw;" —
838 WI_,O}
Expressing weights in function of values of current solutiari-
ables we have:

) +YX(E(9) + X (AL(S)) + V(AT ()~
X (Aﬁ(S)) —Xk(A_(S)) >0

839 5.3.1 Balanced-Set Separation
w0 o Letbe:w’ =w(A+(i)) andw, = w(A(i)),Vi € V;

«« o Build capacitated and asymmetric graph= (V4,En) where

42 Vi =V U{0,n+1} (0, n+ 1 are fictitious vertices) whiley =
843 E UEgj UEj nht1 (Where new sets are double arcs which link O
" andn+ 1 with each othere V.
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Weights corresponds with capacities also defined, and the ot
ers are given by:

— Wo, = maxw;" —wi",0},Vi eV
— Win1 = maxw, —w", 0},VieV

e Solve a maximum flow problem oH between source =0
and sinkt = n+ 1: minimum capacity cu§' U {0} imply that
S' be the most unbalanced set@h

Please note that in mixed case considering the expresk(iSh=

X(AL(S) +YH(AT(S) =X (AR (9) = Y(A™ () +XX(ER(S)) +Y¥(E(9) >
0
we expressed quantities as following

X(Er(S)) = X(Ex (9)) —X“(Er (S))

Y(E(9) =Y(ET(9) —Y(E(5)

that is, all (arcs and edges) ingoing contributes are censt
with negative sign.



858

859

Part IV

RESULTS AND ANALYSIS.
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6. EXPERIMENTS & RESULTS.

Definition 9: Give a mixed grapls = (V,E,A) with required ele-
mentsVR C V, AR C A, Er C E, aR—connected component of a
mixed graph is a mixed subgraghl = (V’,E’,A) in which any
two nodesx,y € V, v1 # V» are connected to each other by paths

X=P1,P2,---,Pi, Pit1,---, P =Yyinwhich each linkp;, pj11 is such
that:

e i,i+1ckERg;
o i,i+1cAR;
eiori+leVwVvi=12,...,1—-1,;

and to which no more nodes or links can be added while presgrvi
its connectivity (maximal connected subgraph).

Every nodes belonging to each disti@tin G are saicR—nodes,
while the set of all of them will be aimed &sS.

Definition 10: Give a mixed grap& = (V,E,A) with required ele-
mentsvVg C V, Ar C A, ER C E, a subseR s saidR—odd iff it has a
odd number of inbound and outbouRé-links.

6.1 A simple relaxed LP Model (MCGRP-LP).

We will show now a simple linear model for obtaining a lower-
bound for our problem. Relaxation model is obtained from plate
model?? relaxing constraints 2.17 and rewriting them only for the
R—nodes just defined. The objective function remains the same a
seen previously.
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min . .. (6.1)
S (4 +x§) =1,v(i,j) eERCE (6.2)
m
inkal,V(l,j)EARCA (6.3)
=1
m
S 3=1,vieCr (6.4)
=1
> dij O +x5) + > X + % diz'<Q,vkeK
(i>j)EER (|>J)E
(6.5)
A< S o+ Y K+
jeVv:(i,j)eEx (i) jeVvi(i,j)eAk(i)
IR R N i1
jev:(i,))eE+(i) JeV:(i,])eA*(i)
Vi e Cr, Vk € K (6.6)

R AR D I
2, T "

(i,1)eAt(i) (1, eAR (i)

DR EED IR TS

Vit (J,h)eA (i) Vi (j,i)eEg (i) vj: (j.DeE- (i)

=
—_
>
O+
_

™M
e

™M
%<x

Vil (LDeEg() Vil (LDEE()
Vi ¢ R:RCV is R—odd vk € K

(6.7)



883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

6. Experiments & Results. 70

PR R N R D W s

V(i) €E& () Vj:(J.h)€Er (S Vii(i,))EAR(S)
SO+ Y o+ Y yi=2,
Vi:(j,1)eAR(S) Vi:(i,))eE(9) Vi:(i,])eA(S)

Vi e wr(RS)vke K  (6.8)
Here we summarize the main features of our relaxation:
e report (1)-(6) identically, and solve it at root node;

e write checked-as-violated (8) for eveRrconnected compo-
nents;

e write checked-as-violated (7) for evelRrodd components;

The resulting value of so builded model will give gss value,
while zyg was computed with our heuristics fixing iteration number
respectively tanaxlter=. .., maxiteration=.... Instead comput-
ing of z* value was done following this algorithmic outline, which
repeat the procedure adopted for compugrguntil there is at least
a violated constraint.

6.1.1 Not-capacitated Instances Results (connectivitg)c

We validated our model testing it on some instances used Iy Co
beran et al. for their experimentations on cutting planerigm for

the General Routing Problem (s@&). These are not-capacitated
instances of mixed graph with demands either over nodesiaks] |
and it is significant because permits to obtain always optirah
ues with good time performance (only 1 second in such ca¥és).
also note here that instanGD427 was not still solved to optimal-
ity, and our optimum value (42550) is very close to upper-bound
(near Q17%) and lower-bound (05%) previously known.
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Algorithm 9 3-cuts separation Heuristic

Require: G= (V,E,A), ¢
Ensure: z*
1: Solve relaxed modéll) — (6) and letS= (x,y,z) be solution.
2: currViols— 0
3: repeat
size = size(currViols)
size2 = size(currViols)
stop«+ updateConstraints(currViols);
if stopthen
break;
end if
10:  currViols = currViolsU parity (currViols)
11:  currViols = currViolsU balanced (currViols)
12:  currViols = currViolsU connection (currViols)
13: size2 =size2 + size(currViols)
14: until size# size2

© o N g

71



Name | V E A CR ER AR A z z USER CPLEX ALL T
alball| 116 158 16 86 14 3 9419 9419 9419 166 18 184 0,1688
albal3| 116 125 49 76 17 5 10744 10744 10744 80 14 94 0,5156
albal5| 116 99 75 93 7 6 11332 11332 11332 56 3 59 0,0215
albal7| 116 96 78 83 11 8 10795 10795 10795 70 13 83 0,0292
albal9| 116 77 97 83 11 8 11410 11410 11410 48 4 52 0,0215
alba31| 116 160 14 42 45 6 9870 9870 9870 44 53 97 0,0556
alba33| 116 126 48 47 35 12 11315 11315 11315 23 23 46 0,0271
alba35| 116 108 66 45 32 20 11435 11435 11435 18 28 46  0,0208
alba37| 116 90 84 47 26 20 11742 11742 11742 29 12 41 0,0132
alba39| 116 89 85 45 28 26 12766 12766 12766 18 21 39 0,0188
alba51| 116 157 17 13 81 9 10931 10931 10931 8 57 65 0,2333
alba53| 116 126 48 12 65 26 12480 12480 12480 10 24 34 0,0181
alba55| 116 103 71 16 51 34 15558 15558 15558 15 31 46 0,0194
alba57| 116 102 72 18 55 41 14893 14893 14893 12 18 30 0,0139
alba59| 116 104 70 20 58 38 15848 15848 15848 6 38 44  0,0139
alba7l| 116 161 13 8 116 10 12566 12566 12566 5 120 125 2,0153
alba73| 116 119 55 12 81 35 16647 16647 16647 2 60 62 0,0111
alba75| 116 106 68 3 83 46 14887 14887 14887 1 54 55 0,0063
alba77| 116 97 77 8 71 51 17427 17427 17427 1 52 53 0,0076
alba79| 116 84 90 8 59 63 15501 15501 15501 19 30 49 0,0042
alba91l| 116 164 10 1 148 10 14497 14497 14497 63 104 167 0,1160
alba93| 116 138 36 2 124 33 15680 15680 15680 1 107 108 0,0194
alba95| 116 98 76 0O 88 72 19032 19032 19032 20 28 48 0,0056
alba97| 116 87 87 1 76 73 19338 19338 19338 9 16 25 0,0056
alba99| 116 90 84 2 79 74 20026 20026 20026 14 26 40 0,0090
GD427| 1000 611 1612 292 187 362 42473,9 425742550 222 64 286 99,3
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o 6.1.2 Capacitated Artificial Instances Results (connégtouts)

s Here we tried to solve our artificial instances as done in arti
w6 reported here some results. We considered base datasén $iesn
w7 part of the thesis (frometo 13e): extending him from 15 links to
s 59 nodes.

%09 Here we reported previous seen results confronting timeetee
20 10 close instances: in general we've seen that branch-ahg-tess
o1 fime-consuming than using the complete formulation. Fan-co
a2 pleteness we reported optimum values in each case (routesls@m
a3 €quivalent).

o14 All the instances was closed except &2, but we note thatl3
25 Was instead now closed.

Tab. 6.1: instances Solutions (cuts)

id T[ms] Z" | Teus[ms] | Zeys
e3 141,00 131 | 2810 | 131
e4 46,00 422 | 109,0 | 422
e5 156,00 | 461 | 172,0 | 461
e6 641,00 | 860 | 157,0 | 860
e’ 657,00 |1284| 218,0 | 1284
e8 | 6031,00 | 1618| 1297,0 | 1618
e9 | 10031,00 | 1731| 547,0 |1731
el0| 9326296,00 2481| 13421,0 | 2481
ell| 329078,00| 2796| 1969,0 | 2796

el2| OOM - - -
el3d| OOM - 62,5 | 3859
016 In what following we reported results for another extendetl s

o7 Of instances: for some of them was not possible terminatotg s

as INQ procedure for an Out-Of-Memory (OOM) error. We reported
as here name, K (number of vehicles), V, E, A, CR, ER, AR, number
20 Of CPLEX cuts, number of user (connection) cuts, optimunueal

2 Seconds required, lower-bour@nd upper-boundfor z.



name
istanzal5e.txt
istanzal8e.txt
istanza2le.txt
istanza24e.txt
istanza27e.txt
istanza30e.txt
istanza33e.txt
istanza36e.txt
istanza39e.txt
istanza42e.txt
istanza45e.txt
istanza48e.txt
istanzable.txt
istanzab4e.txt
istanza57e.txt
istanza60e.txt

NNNWEFENENMNNENPOWWDNPRE

K V

15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60

E

59
85
115
149
188
232
280
332
389
451
517
587
662
742
826
914

46
68
95
127
163
203
248
298
352
410
473
541
613
689
770
856

7
8
8
8
17
16
21
23
16
24
22
19
22
35
20
36

5

5

12
16
13
27
25
31
35
49
56
50
56
61
71
99

5
6
9
7

15
17
23
37
28
35
43
60
62
67
88
62

A CR ER AR CPLEX

12

14

0

N
O'O'gO'O

USER CUTS 7

5
57

6

18
253

12
14

1748

821
739
OOM
OOM
1982
OOM
2269
3477
OOM
3888
OOM
5530
OOM
6958
OOM
OOM

Seconds
0,08
0,32

0,13

0,14
8,89

0,00

0,20

y4
740 1241
705 1480
1110 2215
1232 2736
1878 3334
1960 3725
2244 4229
33565 615
3033 5522
3871 7836
5033 8127
5520 8901
6426 10938

398,001 684710

8114 13655
7867 15180
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7. COMPUTATIONAL COMPLEXITY.

Finally we report our computational complexity analysigher for
the GRASP algorithm than the exact approach. We will use ¢he s
calledO() notation, that is:

Definition 11: an algorithm has time bour@{ f(n)) if there exist
constantdN andK such that for every input of size> N the algo-
rithm will not take more thai - f (n) processing time (Se&?).

7.1 GRASP Complexity.

This procedure is made by two parts: in the start we genehase c
ters, then we try to define a first route over every of them. & th
worst case, the shortest path computing for every nodé was
computed with Floyd-Warshall algorithn©(|V [2)), which is the
predominant operation with respect to others (metrics).etc

7.2 Exact Algorithm Complexity

Complexity analysis was done considering tBat (x,y,z) dimen-
sion is equal tdEr + Ar| + |E + A + |Cg]: in the worst case hy-
pothesis, that is whelB = Eg, A= Ar, V = Cr, Scardinality can be
expressed as(fE + A)|) +|V|. In our analysign quantity is consid-
ered in our computations, but in typical cases it can be aqmiated
for our purposes as a constant£ 1).

RELAXATION. Relaxed model solving requires as predominant
action the computing oR—connected components int the mixed
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7. Computational Complexity. 78

graphG: this operation was made in our implementatio®ifV |2),
so total complexity isn- O(|V |?).

PARITY. Parity checking need buildingy* digraphs from solu-
tion S(O(1) ), finding odd nodes, computing quantitigs), yr(S), F, F’
and eventually add a new constraint to the problem. So tlisear
dure has goin- O(|V|) complexity.

BALANCED-SET. This routine, after building support graphs (con-
stant time), requires as predominant action the Ford & Fatke
algorithm: in general it needs- O(|E + A| - f). Considering our
implementation complexity of this phasens O(|E + A| - [V|?).

CONNECTION. After building support graphs this last phase re-
quires as predominant action the Prim-Dijkstra algorithtimes
(for computing connected components): using adjacencyixnat
needsm- O(|V|?). Considering our implementation complexity of
this phase isn- O(|V|3).
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